Tetrahedron Letters 50 (2009) 3154–3157

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Reductive Heck cyclization versus δ -carbon elimination/decarboxylation: synthesis of dihydroindole and indoles from Baylis–Hillman adducts

Hoo Sook Kim, Hyun Seung Lee, Se Hee Kim, Jae Nyoung Kim *

Department of Chemistry and Institute of Basic Science, Chonnam National University, Gwangju 500-757, Republic of Korea

article info

Article history: Received 8 October 2008 Revised 6 November 2008 Accepted 8 November 2008 Available online 25 December 2008

Keywords: Palladium Reductive Heck cyclization d-Carbon elimination Baylis–Hillman adduct Indole Dihydroindole

abstract

Modified Baylis–Hillman adducts having 2-bromoaniline moiety at the primary position underwent Pdmediated reductive Heck type cyclization to produce dihydroindole derivatives. The same starting materials can also be used for the synthesis of indole derivatives under slightly different conditions via the concomitant δ -carbon elimination and decarboxylation process.

- 2008 Elsevier Ltd. All rights reserved.

Chemical transformations of Baylis–Hillman adducts have received much attention during the last two decades.^{1,2} Various cyclic and acyclic compounds have been prepared from Baylis– Hillman adducts by various chemical transformations.^{[1,2](#page-2-0)} Although Pd-mediated chemical transformations of modified Baylis–Hillman adducts started very recently, it provided many interesting heterocyclic compounds. 2,3 2,3 2,3 Recently, we reported unusual formation of cyclopropane-fused dihydrobenzofuran derivatives from the mod-ified Baylis–Hillman adducts having 2-bromophenol moiety.^{[3](#page-2-0)} In the reaction, the palladium intermediate activated $C(sp^3)$ –H bond and produced cyclopropane-fused compound in moderate yield.^{[3](#page-2-0)} During the study, we also examined the reaction of 1a having 2 bromoaniline moiety and found the formation of dihydroindole 2a (19%) and indole 4a (21%) instead of cyclopropane derivative 5a (Scheme 1).^{[3](#page-2-0)}

The mechanism for the formation of 2a can be regarded as the reductive Heck type reaction involving the intermediate (II), which might be converted to 2a by dimethylamine generated from DMF. 4 Compound 4a could be formed via the base-mediated isomerization of 3a, which might be generated from (II) via the δ -carbon elimination and concomitant decarboxylation process,^{5,6} as depicted in [Scheme 1](#page-1-0).

We reasoned that both compounds 2a and 4a can be prepared selectively by choosing the suitable reaction conditions. Thus, we examined the reactions of 1a under various conditions and found efficient conditions for both products. Some representative trials are summarized in [Table 1](#page-1-0). As in entry 3, $Pd(OAc)₂/PPh₃/Et₃N/$ HCOOH conditions afforded compound 2a in reasonable yield (64%) in DMF at 80 °C in short time (30 min).^{7,8} In the reaction, we did not observe the formation of 3-benzylidene derivative 3a (vide infra). When the reaction of 1a was carried out under the influence of $Pd(OAc)₂/PPh₃/Et₃N$ in aqueous $CH₃CN$ (refluxing, 18 h), we isolated 3a in 72% yield, very fortunately. $8,9$

Encouraged by the results, starting materials 1b–g were synthesized from the bromide of Baylis–Hillman adduct and 2-bromoanilines as shown in Scheme $2^{2,3}$ $2^{2,3}$ $2^{2,3}$ With these compounds **1b-g**, we examined the synthesis of 2b–g and 3b–g as summarized in [Scheme 3.](#page-2-0) Reductive Heck type cyclizations of 1b–g under the optimized conditions [\(Table 1,](#page-1-0) entry 3) produced desired dihydroindoles 2b–g in moderate to good yields (47–80%). The mechanism can be imagined as shown in [Scheme 4,](#page-2-0) involving the intermediates (I)–(III). Rapid conversion of (II) into (III) by formate anion and the following elimination of $CO₂$ and Pd(0) explained the short-reaction time (30 min). Variable amounts of (I) produced the reduction compound 7 via the intermediate (IV). Actually small amounts of reduction compounds were observed on TLC in all cases, and isolated in appreciable amounts (28–36%) in some case ($7c,d,g$).

The synthesis of 3-benzylidene dihydroindole 3b–g was also examined under the optimized conditions ([Table 1](#page-1-0), entry 6). When the N-substituent of 1 is tosyl $(1b)$, acetyl $(1c$ and $1d)$, and ester group (1g), desired compounds 3b–d and 3g were obtained in moderate to good yields (56–75%). However, the reaction with N-benzyl derivatives (1e and 1f) failed completely. We did not

^{*} Corresponding author. Tel.: +82 62 530 3381; fax: +82 62 530 3389. E-mail address: kimjn@chonnam.ac.kr (J.N. Kim).

^{0040-4039/\$ -} see front matter © 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2008.11.127

Table 1 Optimization of reaction conditions with compound 1a

detect even the reduction compounds, and starting materials 1e and 1f were recovered (70–72%). At this stage, the reason for the failure of benzyl derivatives is not clear. The mechanism for the formation of 3-benzylidene compounds 3 could be explained as shown in [Scheme 4,](#page-2-0) involving the concomitant δ -carbon elimina-tion and decarboxylation process of Pd-intermediate (II).^{[6](#page-3-0)}

In order to demonstrate the usefulness of the benzylidene compounds, we converted them into their benzyl- and benzoyl-derivatives by base-mediated isomerization and PCC oxidation,[10](#page-3-0) respectively (vide supra, [Scheme 3](#page-2-0)). Double bond isomerization was carried out with K_2CO_3 in DMF at 110 °C in moderate yields (59–81%). PCC oxidation was carried out in

Scheme 3.

 $CH₂Cl₂$ at room temperature in high yields (86–89%) as reported by us recently.^{[10](#page-3-0)}

In summary, we disclosed an efficient Pd-mediated synthetic approach for both dihydroindole and indole derivatives from the same starting materials by simply adopting different reaction conditions. However, it is difficult to explain the difference between the two reaction pathways in detail at this stage. Detailed mechanistic study and synthetic application of these findings are underway.

Acknowledgments

This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, KRF-2007- 313-C00417). Spectroscopic data were obtained from the Korea Basic Science Institute, Gwangju branch.

References and notes

- 1. For general review on Baylis–Hillman reaction, see: (a) Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811-891; (b) Ciganek, E.. In Organic Reactions; Paquette, L. A., Ed.; John Wiley & Sons: New York, 1997; Vol. 51, pp 201–350; (c) Basavaiah, D.; Rao, P. D.; Hyma, R. S. Tetrahedron 1996, 52, 8001– 8062; (d) Kim, J. N.; Lee, K. Y. Curr. Org. Chem. 2002, 6, 627–645; (e) Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Bull. Korean Chem. Soc. 2005, 26, 1481–1490; (f) Singh, V.; Batra, S. Tetrahedron 2008, 64, 4511-4574 and further references cited therein.
- 2. For our recent contributions on Pd-mediated reactions of modified Baylis– Hillman adducts, see: (a) Gowrisankar, S.; Lee, H. S.; Kim, J. M.; Kim, J. N. Tetrahedron Lett. 2008, 49, 1670–1673; (b) Kim, J. M.; Kim, K. H.; Kim, T. H.; Kim, J. N. Tetrahedron Lett. 2008, 49, 3248–3251; (c) Gowrisankar, S.; Lee, H. S.; Lee, K. Y.; Lee, J.-E.; Kim, J. N. Tetrahedron Lett. 2007, 48, 8619–8622; (d) Lee, H. S.; Kim, S. H.; Kim, T. H.; Kim, J. N. Tetrahedron Lett. **2008**, 49, 1773-1776; (e) Lee, H. S.; Kim, S. H.; Gowrisankar, S.; Kim, J. N. Tetrahedron 2008, 64, 7183– 7190.
- 3. Kim, H. S.; Gowrisankar, S.; Kim, S. H.; Kim, J. N. Tetrahedron Lett. 2008, 49, 3858–3861.

4. Zawisza, A. M.; Muzart, J. Tetrahedron Lett. 2007, 48, 6738–6742.

- 5. For the reactions involving β -carbon elimination, see: (a) Nishimura, T.; Nishiguchi, Y.; Maeda, Y.; Uemura, S. J. Org. Chem. 2004, 69, 5342–5347; (b) Matsumura, S.; Maeda, Y.; Nishimura, T.; Uemura, S. J. Am. Chem. Soc. 2003, 125, 8862–8869; (c) Nishimura, T.; Araki, H.; Maeda, Y.; Uemura, S. Org. Lett. 2003, 5, 2997–2999; (d) Nishimura, T.; Matsumura, S.; Maeda, Y.; Uemura, S. Tetrahedron Lett. 2002, 43, 3037–3039; (e) Nishimura, T.; Ohe, K.; Uemura, S. J. Am. Chem. Soc. 1999, 121, 2645–2646; (f) Nishimura, T.; Uemura, S. J. Am. Chem. Soc 1999, 121, 11010–11011; (g) Terao, Y.; Wakui, H.; Satoh, T.; Miura, M.; Nomura, M. J. Am. Chem. Soc. 2001, 123, 10407–10408; (h) Terao, Y.; Wakui, H.; Nomoto, M.; Satoh, T.; Miura, M.; Nomura, M. J. Org. Chem. 2003, 68, 5236– 5243; (i) Wakui, H.; Kawasaki, S.; Satoh, T.; Miura, M.; Nomura, M. J. Am. Chem. Soc. 2004, 126, 8658–8659; (j) Zhang, Y.; Feng, J.; Li, C.-J. J. Am. Chem. Soc. 2008, 130, 2900–2901; (k) Nishimura, T.; Uemura, S. Synlett 2004, 201–216 and further references cited therein.
- 6. Kim, H. S.; Gowrisankar, S.; Kim, E. S.; Kim, J. N. Tetrahedron Lett. 2008, 49, 6569–6572; Direct elimination of CH₃Br from (II) to form the five-membered palladacycle and the following simultaneous elimination of $CO₂$ and Pd(0) to form 3a would be also possible. For this type of reductive cleavage process involving decarboxylation, see: Harayama, H.; Kuroki, T.; Kimura, M.; Tanaka, S.; Tamaru, Y. Angew. Chem., Int. Ed. 1997, 36, 2352–2354.
- 7. Dihydroindole $2a$ was synthesized by using the radical cyclization (AIBN, n-Bu₃SnH, benzene, reflux, 2 h) in 71% yield also. However, due to the toxicity of tin metal and the fact that more than equivalent amounts of tin compound have to be used, reductive Heck reaction can be regarded as a superior way than the radical process.
- 8. Typical experimental procedure for the synthesis of 2a: A stirred mixture of 1a $(250 \text{ mg}, 0.5 \text{ mmol})$, Pd $(0Ac)_{2}$ (6 mg, 5 mol %), PPh₃ (13 mg, 10 mol %), HCOOH (46 mg, 1.0 mmol), and Et₃N (126 mg, 1.25 mmol) in DMF (2.0 mL) was heated
to 80 °C for 30 min. After the usual aqueous workup and column chromatographic purification process (hexanes/EtOAc, 15:1), compound 2a was isolated as colorless oil, 135 mg 135 mg 135 mg (64%) ³ Other compounds were synthesized similarly, and the representative spectroscopic data of 2b, 2e, and 2g are as follows.

Compound 2b: 67%; white solid, mp 39-41 °C; IR (film) 1734, 1489, 1358, 1167, 1092 cm⁻¹; ¹H NMR (CDCl_{3,} 300 MHz) δ 2.29 (s, 3H), 2.35 (s, 3H), 2.81 (d, $J = 13.5$ Hz, 1H), 3.30 (d, $J = 13.5$ Hz, 1H), 3.59 (s, 3H), 3.96 (d, $J = 11.1$ Hz, 1H), 4.21 (d, J = 11.1 Hz, 1H), 6.92–6.95 (m, 2H), 7.07 (d, J = 8.4 Hz, 1H), 7.15–7.24 (m, 6H), 7.52 (d, J = 8.4 Hz, 1H), 7.67 (d, J = 8.1 Hz, 2H); ¹³C NMR (CDCl₃, 75 MHz) d 20.92, 21.44, 44.32, 52.43, 55.60 (2C), 114.08, 125.74, 127.08, 127.36, 128.39, 129.54, 129.56, 129.95, 132.35, 133.20, 133.80, 135.76, 138.85, 140.01, 172.27; ESIMS m/z 436 (M⁺+1). Anal. Calcd for C₂₅H₂₅NO₄S: C, 68.94; H, 5.79; N, 3.22. Found: C, 68.67; H, 5.98; N, 3.13.

Compound 2e: 80%; yellow oil; IR (film) 1732, 1603, 1495, 1454, 1244 cm $^{-1}$; 1 H NMR (CDCl₃, 300 MHz) δ 3.04 (d, J = 13.2 Hz, 1H), 3.36 (d, J = 9.6 Hz, 1H), 3.37 $(d, J = 13.2 \text{ Hz}, 1\text{ H})$, 3.68 $(d, J = 9.6 \text{ Hz}, 1\text{ H})$, 3.70 $(s, 3\text{ H})$, 4.10 $(d, J = 15.3 \text{ Hz}, 1\text{ H})$, 4.33 d, J = 15.3 Hz, 1H), 6.46 (d, J = 7.8 Hz, 1H), 6.72 (t, J = 7.5 Hz, 1H), 6.92-6.98 (m, 2H), 7.12 (t, J = 7.5 Hz, 1H), 7.15–7.33 (m, 8H), 7.36 (d, J = 7.5 Hz, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ 48.80, 52.14, 52.56, 56.16, 58.98, 107.27, 117.67, 124.75, 126.68, 127.08, 127.56, 128.12, 128.44, 128.97, 129.67, 130.27, 136.86, 137.91, 151.16, 173.43; ESIMS m/z 358 (M⁺+1).

Compound 2g: 47%; colorless oil; IR (film) 1734, 1713, 1487, 1409, 1334 cm⁻¹ Compound 2g: 47%; colorless oil; IR (film) 1734, 1713, 1487, 1409, 1334 cm⁻¹;
¹H NMR (CDCl₃, 300 MHz) δ 1.32 (br t, *J* = 7.2 Hz, 3H), 3.06 (d, *J* = 13.8 Hz, 1H), 3.46 (d, *J* = 13.8 Hz, 1H), 3.42 (br d, *J* = 12 129.56, 131.74, 135.92, 141.98, 152.80, 172.95; ESIMS m/z 340 (M⁺+1).

Typical experimental procedure for the synthesis of 3a: A stirred mixture of 1a

(250 mg, 0.5 mmol), Pd(OAc)₂ (6 mg, 5 mol %), PPh₃ (13 mg, 10 mol %), and Et₃N (61 mg, 0.6 mmol) in aqueous CH₃CN (2.0 mL, CH₃CN/H₂O, 9:1) was heated to reflux for 18 h. After the usual aqueous workup and column chromatographic purification process (hexanes/ether/CH₂Cl₂, 20:1:2), compound 3a was isolated as a white solid, 130 mg (72%). Other compounds were synthesized similarly, and the representative spectroscopic data of 3a, 3b, and 3g are as follows.

Compound 3a: 72%; white solid, mp 156–158 °C; IR (film) 1465, 1357, 1167, 11167, 11167, 11167, 11167, 11167, 1117, 1092 cm⁻¹; ¹H NMR (CDCl_{3,} 300 MHz) δ 2.34 (s, 3H), 4.87 (d, J = 3.0 Hz 2H), 6.79 (t, J = 3.0 Hz, 1H), 7.05 (t, J = 7.5 Hz, 1H), 7.20–7.30 (m, 6H), 7.39–7.49
(m, 3H), 7.71–7.77 (m, 3H); ¹³C NMR (CDCl_{3,} 75 MHz) δ 21.50, 54.54, 114.70 118.46, 120.27, 123.75, 127.10, 127.18, 128.27, 128.81, 129.79, 129.83, 131.04, 132.45, 134.04, 136.25, 143.26, 144.33; ESIMS m/z 362 (M⁺+1). Anal. Calcd for $C_{22}H_{19}NO_2S$: C, 73.10; H, 5.30; N, 3.88. Found: C, 72.87; H, 5.41; N, 3.63.

Compound 3b: 74%; white solid, mp 150-152 °C; IR (film) 1483, 1356, 1166, 1130, 1092 cm⁻¹; ¹H NMR (CDCl_{3,} 300 MHz) δ 2.33 (s, 3H), 2.34 (s, 3H), 4.84 (d $J = 3.0$ Hz, 2H), 6.76 (t, $J = 3.0$ Hz, 1H), 7.09 (d, $J = 8.1$ Hz, 1H), 7.19–7.28 (m, 6H), 7.38–7.43 (m, 2H), 7.64–7.72 (m, 3H); ¹³C NMR (CDCl_{3,} 75 MHz) δ 20.99, 21.50, 54.73, 114.63, 118.10, 120.61, 127.08, 127.14, 128.25, 128.80, 129.79, 130.69, 131.12, 132.62, 133.49, 133.89, 136.34, 141.16, 144.20; ESIMS m/z 376 (M⁺+1). Compound 3g: 75%; white solid, mp 111–113 °C; IR (film) 1714, 1479, 1407, 1407, 1407, 1500 cm⁻¹; ¹H NMR (CDCl_{3,} 300 MHz) δ 1.39 (br t, *J* = 6.6 Hz, 3H), 4.33 (bi s, 2H), 4.82 (br s, 2H), 6.84 (t, J = 3.0 Hz, 1H), 7.01 (t, J = 7.5 Hz, 1H), 7.22–7.42
(m, 6H), 7.52 (d, J = 7.5 Hz, 1H), 7.97 (s, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ 14.43 52.45, 61.28, 114.86, 117.38, 119.42, 122.46, 126.54, 127.92, 128.40, 129.27, 130.11, 132.96, 136.32, 143.53, 151.86; ESIMS m/z 280 (M⁺+1).Syntheses of compounds 4 and 6 were carried out as shown in [Scheme 3,](#page-2-0) and the representative spectroscopic data of 4b, 4g, 6a, and 6b are as follows.

Compound **4b**: 73%; colorless oil; IR (film) 1455, 1370, 1171, 1121, 1095 cm⁻¹;
¹H NMB (CDCL, 300 MHz) $\frac{3}{2}$ 33 (s. 3H) 235 (s. 3H) 3.96 (s. 2H) 7.08-7.31 (m ¹H NMR (CDCl_{3,} 300 MHz) δ 2.33 (s, 3H), 2.35 (s, 3H), 3.96 (s, 2H), 7.08–7.31 (m, 10H), 7.69 (t, J = 8.1 Hz, 2H), 7.84 (d, J = 8.7 Hz, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ 21.32, 21.52, 31.27, 113.50, 119.56, 122.32, 124.14, 126.10, 126.35, 126.70, 128.50, 128.58, 129.71, 131.11, 132.77, 133.77, 135.25, 139.05, 144.58; ESIMS m/z 376 (M⁺+1).

Compound 4g: 81%; colorless oil; IR (film) 1733, 1456, 1399, 1380, 1249 cm⁻¹; ¹H NMR (CDCl_{3,} 300 MHz) δ 1.43 t, J = 7.2 Hz, 3H), 4.03 (d, J = 0.9 Hz, 2H), 4.45 $(q, J = 7.2 \text{ Hz}, 2H)$, 7.16–7.34 (m, 8H), 7.42 (d, $J = 7.8 \text{ Hz}, 1H$), 8.16 (d, $J = 8.1 \text{ Hz}$, 1H); ¹³C NMR (CDCl_{3,} 75 MHz) δ 14.41, 31.38, 62.99, 115.22, 119.34, 120.83, 122.66, 123.16, 124.53, 126.24, 128.46, 128.66, 130.47, 135.74, 139.49, 151.02; ESIMS m/z 280 (M⁺+1).

Compound 6a: 88%; yellow oil; IR (film) 1644, 1534, 1447, 1379, 1208, 1175 cm⁻¹; ¹H NMR (CDCl_{3,} 300 MHz) δ 2.35 (s, 3H), 7.24-7.28 (m, 2H), 7.35-7.44 (m, 2H), 7.51–7.57 (m, 2H), 7.60–7.66 (m, 1H), 7.78–7.82 (m, 2H), 7.85– 7.89 (m, 2H), 7.97–8.00 (m, 1H), 8.03 (s, 1H), 8.29–8.32 (m, 1H); 13C NMR $(CDC_3$ 75 MHz) δ 21.59, 113.14, 120.35, 122.94, 124.82, 125.91, 127.10, 128.48, 128.63, 128.99, 130.19, 132.35, 133.54, 134.44, 134.94, 139.14, 145.91, 190.82; ESIMS m/z 376 (M⁺+1). Anal. Calcd for C₂₂H₁₇NO₃S: C, 70.38; H, 4.56; N 3.73. Found: C, 70.44; H, 4.76; N, 3.62.

Compound 6b: 86%; yellow oil; IR (film) 1645, 1533, 1377, 1215, 1175 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 2.34 (s, 3H), 2.45 (s, 3H), 7.20–7.26 (m, 3H), 7.50–7.56 (m, 2H), 7.59–7.65 (m, 1H), 7.76–7.80 (m, 2H), 7.84–7.88 (m, 3H), 7.97 (s, 1H)
8.11–8.12 (m, 1H); ¹³C NMR (CDCl_{3,} 75 MHz) δ 21.37, 21.55, 112.76, 120.15, 122.67, 127.03, 127.31, 128.59, 128.67, 128.97, 130.13, 132.27, 133.19, 133.68, 134.47, 134.73, 139.20, 145.78, 190.23; ESIMS m/z 390 (M⁺+1).

- 9. Gowrisanakr, S.; Kim, K. H.; Kim, S. H.; Kim, J. N. Tetrahedron Lett. 2008, 49, 6241–6244.
- 10. (a) Kim, S. J.; Lee, H. S.; Kim, J. N. Tetrahedron Lett. 2007, 48, 1069–1072; (b) Kim, S. C.; Lee, H. S.; Kim, J. N. Bull. Korean Chem. Soc. 2007, 28, 147– 150.