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Modified Baylis–Hillman adducts having 2-bromoaniline moiety at the primary position underwent Pd-
mediated reductive Heck type cyclization to produce dihydroindole derivatives. The same starting mate-
rials can also be used for the synthesis of indole derivatives under slightly different conditions via the
concomitant d-carbon elimination and decarboxylation process.
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Chemical transformations of Baylis–Hillman adducts have
received much attention during the last two decades.1,2 Various
cyclic and acyclic compounds have been prepared from Baylis–
Hillman adducts by various chemical transformations.1,2 Although
Pd-mediated chemical transformations of modified Baylis–Hillman
adducts started very recently, it provided many interesting hetero-
cyclic compounds.2,3 Recently, we reported unusual formation of
cyclopropane-fused dihydrobenzofuran derivatives from the mod-
ified Baylis–Hillman adducts having 2-bromophenol moiety.3 In
the reaction, the palladium intermediate activated C(sp3)–H bond
and produced cyclopropane-fused compound in moderate yield.3

During the study, we also examined the reaction of 1a having 2-
bromoaniline moiety and found the formation of dihydroindole
2a (19%) and indole 4a (21%) instead of cyclopropane derivative
5a (Scheme 1).3

The mechanism for the formation of 2a can be regarded as the
reductive Heck type reaction involving the intermediate (II), which
might be converted to 2a by dimethylamine generated from DMF.4

Compound 4a could be formed via the base-mediated isomeriza-
tion of 3a, which might be generated from (II) via the d-carbon
elimination and concomitant decarboxylation process,5,6 as de-
picted in Scheme 1.

We reasoned that both compounds 2a and 4a can be prepared
selectively by choosing the suitable reaction conditions. Thus, we
examined the reactions of 1a under various conditions and found
ll rights reserved.
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efficient conditions for both products. Some representative trials
are summarized in Table 1. As in entry 3, Pd(OAc)2/PPh3/Et3N/
HCOOH conditions afforded compound 2a in reasonable yield
(64%) in DMF at 80 �C in short time (30 min).7,8 In the reaction,
we did not observe the formation of 3-benzylidene derivative 3a
(vide infra). When the reaction of 1a was carried out under the
influence of Pd(OAc)2/PPh3/Et3N in aqueous CH3CN (refluxing,
18 h), we isolated 3a in 72% yield, very fortunately.8,9

Encouraged by the results, starting materials 1b–g were synthe-
sized from the bromide of Baylis–Hillman adduct and 2-bromoani-
lines as shown in Scheme 2.2,3 With these compounds 1b–g, we
examined the synthesis of 2b–g and 3b–g as summarized in
Scheme 3. Reductive Heck type cyclizations of 1b–g under the opti-
mized conditions (Table 1, entry 3) produced desired dihydroin-
doles 2b–g in moderate to good yields (47–80%). The mechanism
can be imagined as shown in Scheme 4, involving the intermediates
(I)–(III). Rapid conversion of (II) into (III) by formate anion and the
following elimination of CO2 and Pd(0) explained the short-reaction
time (30 min). Variable amounts of (I) produced the reduction
compound 7 via the intermediate (IV). Actually small amounts of
reduction compounds were observed on TLC in all cases, and iso-
lated in appreciable amounts (28–36%) in some case (7c,d,g).

The synthesis of 3-benzylidene dihydroindole 3b–g was also
examined under the optimized conditions (Table 1, entry 6). When
the N-substituent of 1 is tosyl (1b), acetyl (1c and 1d), and ester
group (1g), desired compounds 3b–d and 3g were obtained in
moderate to good yields (56–75%). However, the reaction with
N-benzyl derivatives (1e and 1f) failed completely. We did not



Table 1
Optimization of reaction conditions with compound 1a

Entry Conditions 1a (%) 2a (%) 3a (%) 4a (%)

1Ref. 3 Pd(OAc)2 (10 mol %)/K2CO3 (20 equiv) nd 19 nd 21
TBAB (10 equiv)/DMF, 110 �C, 90 min

2 Pd(OAc)2 (5 mol %)/PPh3 (10 mol %) 33 34 nd nd
Et3N (2.5 equiv)/HCOOH (2.0 equiv)/THF, 80 �C, 48 h

3 Pd(OAc)2 (5 mol %)/PPh3 (10 mol %) nd 64 nd nd
Et3N (2.5 equiv)/HCOOH (2.0 equiv)/DMF, 80 �C, 30 min

4 Pd(OAc)2 (5 mol %)/PPh3 (10 mol %) 70 <5 nd nd
CH3CN/reflux, 6 h

5 Pd(OAc)2 (5 mol %)/PPh3 (10 mol %) nd 10 60 nd
Et3N (1.2 equiv)/CH3CN/reflux, 12 h

6Ref. 9 Pd(OAc)2 (5 mol %)/PPh3 (10 mol %) nd 9 72 nd
Et3N (1.2 equiv)/CH3CN–H2O (9:1)/reflux, 18 h
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detect even the reduction compounds, and starting materials 1e
and 1f were recovered (70–72%). At this stage, the reason for the
failure of benzyl derivatives is not clear. The mechanism for the
formation of 3-benzylidene compounds 3 could be explained as
shown in Scheme 4, involving the concomitant d-carbon elimina-
tion and decarboxylation process of Pd-intermediate (II).6
In order to demonstrate the usefulness of the benzylidene
compounds, we converted them into their benzyl- and ben-
zoyl-derivatives by base-mediated isomerization and PCC oxida-
tion,10 respectively (vide supra, Scheme 3). Double bond
isomerization was carried out with K2CO3 in DMF at 110 �C in
moderate yields (59–81%). PCC oxidation was carried out in
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CH2Cl2 at room temperature in high yields (86–89%) as reported
by us recently.10

In summary, we disclosed an efficient Pd-mediated synthetic
approach for both dihydroindole and indole derivatives from the
same starting materials by simply adopting different reaction con-
ditions. However, it is difficult to explain the difference between
the two reaction pathways in detail at this stage. Detailed mecha-
nistic study and synthetic application of these findings are
underway.
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